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ABSTRACT.  This paper analyzes the learnability of dominant accentual patterns of Sino-Japanese words and 
loanwords using the constraint ranking proposed by Li (2017) as the target grammar. Convergence results of 
computational simulations vary across algorithms and levels of inputs. Learning in the face of hidden structure, 
learners of Robust Interpretive Parsing (RIP; Tesar and Smolensky 2000) did not converge, indicating the 
failure to make full use of available probabilistic information. Instead, two novel parsing strategies proposed by 
Jarosz (2013) help to solve related problems of RIP, yielding significant improvements in performance even 
with the relatively complex target grammar.   
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1. Introduction 

Learnability deals with the problem of how learners approach, and eventually converge to 
the target grammar. In Optimality Theory (OT; Prince and Smolensky 1993/2004) 
particularly, learnability asks how learners equipped with an initial constraint ranking update 
each constraint position until the final ranking matches the adult one. Compared to general 
OT work that focuses on the construction of the adult grammar, learnability is less studied, 
and less accountable when there are hidden structures like feet that need to be parsed (e.g. 
whether [σσ’σ] should be parsed into iambic /(σσ’)σ/ or trochaic /σ(σ’σ)/). Depending on the 
data and the algorithm, the attempt to disambiguate sometimes fails, bringing inconsistency 
to the whole OT analysis. 

Taking several combinations of learning and parsing algorithms into consideration, this 
paper conducts a computational study on the learnability of dominant accentual patterns 
observed in Sino-Japanese words and loanwords. The main purpose here is to examine the 
convergence rate of different algorithms with or without the intervention of the hidden 
structure problem, and to present various learning patterns into which the results can be 
classified.  
 
2. Multi-level representation 

Apoussidou (2007), which studied the learnability of metrical phonology in detail, used a 
three-level phonological representation for the hidden structure problem. As shown in (1), 
these three levels, Underlying Form (UF), Surface Form (SF) and Overt Form (OF), are 
represented by vertical bars, slashes and brackets respectively.  

 

(1) Three-level phonological representation (Apoussidou 2007) 
UF |σσσ| Syllables only 
SF /(σ’σ)σ/ Syllables, foot structures and the stress 
OF [σ’σσ] Syllables and the stress 

 

 UF only consists of syllables, and can be extracted trivially from SF and OF in 
Apoussidou’s analyses of grammatical stress in Latin and Pintupi. SF, which is the output 
level of general OT analyses, contains the full structural description, namely syllables, foot 
structures and the stress. Compared to SF, OF lacks the hidden foot structures but has the 
remaining overt information, and is hence more realistic considering the process of 
perception. Ambiguity emerges when OF is parsed into SF for learners to obtain the foot 
structure. 
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3. Target grammar and dominant accentual patterns 

Based on Ito and Mester (2016) which conducted a thorough OT analysis of loanwords, 
Li (2017) proposed a constraint ranking that accounts for dominant accentual patterns of both 
Sino-Japanese words and loanwords simultaneously, as presented in (2). 

 

(2) Constraint hierarchy as the target grammar1 (Li 2017) 

         
 

 Dominant accentual patterns of the two lexical strata are shown in (3), with foot structure 
optimally specified (L: light syllable; H: heavy syllable; #: morpheme boundary; +: lexeme 
boundary; boldface: foothead).  
 

(3) Dominant accentual patterns (Li 2017) 
a. Sino-Japanese words and loanwords 
(L’) (L’L) (H’)   
b. Sino-Japanese words 
(L’)#L (L)#(LL) (L’L)#L (H’)#L (L)#(H) 
(H)#(LL) (LL)#(H) (H)#(H) (LL)#(LL)  
c. Loanwords 
(L’L)L (H’)L (L’)H (LL)(LL) (H)(LL) 
L(H’)L (LL)(L’L)L (LL)L(L’L)L (H’)H (H)L(L’L)L 
(H)(L’)H L(L’L)H L(H’)H L(H)(LL) (L’L)H 
(H)+(H) (LL)+(L) (LL)+(H) (H)(H’)L (LL)(LL) (L’L)L 

  

 In order to explain the different accentual distribution in these lexical strata, the analysis 
in Li (2017) highly relied on constraints such as quantity-sensitive NONFIN(L) and morpho-
phonological LEXFT and MORFT, which all referred to the foot structure in particular ways. 
The complexity of foot specification makes it even harder to parse the hidden structure as 
expected in an ambiguous condition. 
 
4. Algorithms 

This section briefly introduces two learning algorithms, Error-Driven Constraint 
Demotion (EDCD; Tesar and Smolensky 2000) and Gradual Learning Algorithm (GLA; 
Boersma 1997, 1999; Boersma and Hayes 2001), and the parsing algorithm Robust 
Interpretive Parsing (RIP; Tesar and Smolensky 2000), which are all widely used in 
learnability-related literature.  
 
4.1 EDCD 

EDCD is a learning algorithm based on original OT which has discrete ranks. This 
algorithm assumes that, given a set of grammatical structural descriptions as inputs and a 
constraint hierarchy Hstart as the initial grammar, learners use their current grammar H to 
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select the optimal candidate, and compare it with the real data. If the current optimal output 
loser does not match the real data winner, then the deciding constraints that favor the loser 
should be minimally demoted below constraints that favor the winner, resulting in a new 
constraint hierarchy Hnew. Learners will use Hnew to update their current grammar and apply it 
to the next input. This learning process will not stop until all optimal outputs produced by the 
learner’s grammar match the real data. 

 
4.2 GLA 

GLA is based on stochastic OT (Boersma 1997, 1999; Boersma and Hayes 2001), which 
is aimed at modeling free grammatical variation and speech errors that are frequently seen 
during the early learning stage. Unlike the discrete ranking in original OT, the ranking in 
stochastic OT is continuous, with each constraint numerically assigned a ranking value. At 
evaluation time, the evaluator adds a Gaussian random variable (mean = 0, standard deviation 
= evaluation noise) to each constraint to temporally randomize their current ranking value.  

An example from Boersma and Hayes (2001) is shown in (4). Constraints C2 and C3 have 
their own distribution of ranking values. At evaluation time, it is possible to choose the 
selection points within the range of these two constraints. Generally as in (4a), selection 
point ･2 is ranked higher than ･3, resulting in C2 ≫ C3 with high probability, but if ･2 and ･3 

are randomized as in (4b), then C3 would outrank C2. 
 

(4) Stochastic evaluation (Boersma and Hayes, 2001) 
a. Common result: C2 ≫ C3 

   
b. Rare result: C3 ≫ C2 

       

 Unlike EDCD, whose update rule only permits minimal demotion, GLA often demotes 
constraints that favor the loser and promotes constraints that favor the winner symmetrically. 
The range of demotion and promotion is decided by the parameter plasticity (ε). If ε is set to 
1, then the ranking value should be added or subtracted by 1 regarding whether the constraint 
favor the winner or the loser. As reported in Boersma (2003), GLA performs better than 
EDCD when the problem of hidden structures gets involved2.   
 
4.3 RIP 

RIP is a representative parsing algorithm in OT for learners to build hidden structures 
from overt information. An example from Apoussidou (2007) is shown in (5). Compared to 
general OT work whose input level is often UF, the input level of RIP is OF, which means 
that overt information like stress or accent is incorporated in it.  Candidates in RIP are 
represented in SF, but all restricted to those whose OF is identical to the input. Learners then 
pick one candidate ☞RIP as optimal based on their current grammar (ALLFT-L ≫ ALLFT-R ≫ 
TROCHAIC ≫ IAMBIC in (5)), and interpret it as the winner for the current data.  
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(5) RIP in OT (Apoussidou 2007) 
OF: [σσ’σ] ALLFT-L ALLFT-R TROCHAIC IAMBIC 

           a. /σ(σ’)σ/  [σσ’σ] *! *   
☞RIP  b. /(σσ’) σ/ [σσ’σ]  * *  
           c. /σ(σ’σ)/  [σσ’σ] *!   * 

 

 Next, as shown in (6), learners do general OT evaluation with UF as the input and an 
unlimited candidate set, pick one candidate ☞VP as optimal, and compare it with ☞RIP. If ☞VP 
and ☞RIP are different from each other, then the update rule based on EDCD (TROCHAIC 
demoted below IAMBIC) or GLA (TROCHAIC demoted and IAMBIC promoted numerically) is 
applied. If they match each other, then the current learning step ends and the algorithm moves 
to another datum. 
 

(6) Error detection, given underlying form (Apoussidou 2007) 
UF: |σσσ| ALLFT-L ALLFT-R TROCHAIC IAMBIC 

           a.  |σσσ|  /σ(σ’)σ/  [σσ’σ] *! *   
☞RIP  b.  |σσσ|  /(σσ’)σ/  [σσ’σ]  * *!  
           c.  |σσσ|  /σ(σ’σ)/  [σσ’σ] *!   * 
☞VP   d.  |σσσ|  /(σ’σ)σ/  [σ’σσ]  *  * 
           e.  |σσσ|  /σ(σσ’)/  [σσσ’] *!  *  
           f.  |σσσ|  /(σ’)σσ/  [σ’σσ]  **!   
           g. |σσσ|  /σσ(σ’)/  [σσσ’] *!*    

 

In the next two sections, computational simulations are carried out to examine the 
convergence rate in different situations where the input level (SF or OF) and the learning 
algorithm (EDCD or GLA) are taken into consideration. 
 
5. Simulations: without parsing 

This section conducts simulations with SF as the input level, which means the winners’ 
optimal foot structures are known to learners without parsing. Training data are shown in (3) 
with full structural description. Praat (version 6.0.19; Boersma and Weenink 2016) is used to 
carry out all simulations in this paper.  
 
5.1 EDCD 

The parameter settings for EDCD learners are specified in (7). The update rule and the 
initial ε mean that ranking values of deciding constraints that favor the loser are minimally 
demoted below constraints that favor the winner by one. Due to the discreteness of original 
OT, the value of ε here does not affect the actual ranking. Because variation of ranking values 
is not allowed in EDCD, evaluation noise is set to 0. The number of ε assigned 1 indicates 
that ε is kept to 1 during the whole learning process. Replications per ε set to 1,000 stipulates 
that 1,000 learning steps are carried out for the current ε. After 1,000 learning steps, the result 
is counted as one simulation for one learner. Twenty learners are simulated here, and the 
initial ranking values of constraints are all set to 100. After the whole learning process, 
100,000 SF data are randomly generated based on the learner’s final grammar, and are 
compared with the actual OF data shown in (3) to calculate the accuracy rate without 
considering the foot structure. The algorithm is considered to have converged successfully 
only if the learner’s accuracy rate is 100%.   
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(7) parameter settings for EDCD learners 
Update rule Evaluation noise Initial ε Number of ε Replications per ε 
EDCD 0 1 1 1,000 

 

As a result, all EDCD learners converged to the target grammar (convergence rate = 
100%), the effect of which was proven in Tesar and Smolensky (2000). Learners’ final 
rankings can be classified into two patterns. Ten learners belong to the first pattern, Linguist 
Analysis (PLA), which is identical to the target constraint hierarchy shown in (2). Figure 1 
presents the ranking dynamics of this pattern. From this we can see that the learning process 
effectively stops at about the 125th learning step, after which ranking values do not change 
anymore. 

The second pattern, Crucial Ties (PCT; 10 learners), treats two or more constraints with 
tied ranks as one constraint and counts their violation marks jointly. An example for learners 
whose INITFT and WDACC ranked equally is given in (8). The unaccented (8a) and ante-
penultimate-mora-accented (8b) violate WDACC and INITFT respectively. Because of the 
equal rank of these two constraints, violation marks here are canceled out, bringing the 
competition to the final-rank PARSE-σ. However, as pointed out by Apoussidou (2007) and 
McCarthy (2008), the strategy of crucial ties does not have enough evidence to prove itself 
valid. Turning back to (8), it is implausible to consider that not parsing the initial syllable into 
a foot is as disadvantageous as not having an accent.  

 

(8) Crucial Ties: WDACC and INITFT 

|LLLL| 
(/amerika/ ‘America’) 
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☞	a. /(LL)(LL)/       *   *   * * 
b. /L(L’L)L/    *  *  *  *  * * *!* 

 

5.2 GLA 
The parameter settings for GLA learners are specified in (9). The update rule set to 

Symmetrical all means that constraints that favor the loser are demoted, and constraints that 
favor the winner are promoted symmetrically. In order to make use of stochastic knowledge, 
evaluation noise is assigned a value of 2. The number of ε is set to 4 and each of them are 
used 10,000 times (40,000 times in total). To model different learning speeds in different 
learning stages, the decrement of ε is set to 0.1, which means that the first ε is 1, the second 

Figure 1 EDCD, PLA, without parsing Figure 2 GLA, PLA, without parsing 
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0.1, the third 0.01, and the forth 0.001. Other parameter settings are the same as those in 
Section 5.1.  

 

(9)  parameter settings for EDCD learners 
Update rule Evaluation noise Initial ε Number of ε Replications per ε  ε decrement 
Symmetric all 2 1 4 10,000 0.1 

 

GLA learners also learned the target grammar successfully (convergence rate = 100%), 
and they all belong to PLA. The ranking dynamics of one representative learner are shown in 
Figure 2, where constraint demotion and promotion can both be observed. In the early 
learning stage, ε has a big value and learning errors occur frequently, which makes the 
ranking dynamics fluctuate greatly. But as learning proceeds, ε becomes smaller and learning 
errors decrease, resulting in near-stable ranking values. 
 
6. Simulations: parsing with RIP 

This section runs simulations with OF as the input level, which is more realistic 
considering the process of perception. In order to get a full structural description for the input, 
learners must make use of their parsing algorithm, at the risk of wrongly guessing a hidden 
structure that does not match the expected one. Here EDCD and GLA learners are equipped 
with RIP, with the same training data (foot structure removed) and parameter settings as in 
Section 5. Basic statistics of the accuracy rate of these two algorithms are given in (10). 

 

(10) Descriptive statistics of EDCD/RIP and GLA/RIP 
Algorithm N Mean SD Median Min Max 
EDCD/RIP 20 0.89 0.15 0.98 0.5 0.98 
GLA/RIP 20 0.92 0.01 0.92 0.92 0.94 

 

 Compared to the guaranteed convergence illustrated in Section 5, neither EDCD/RIP nor 
GLA/RIP learners converged to the target grammar. A statistical difference was not found 
between these two algorithms (Mann-Whitney U test, U = 157.5, p = .245). 
 
6.1 EDCD/RIP 

Results of EDCD/RIP learners can be classified into two patterns. The first pattern, 
PNF(F’)/IF↑, has twelve learners with the reversed partial ranking NONFIN(FT’), INITFT ≫ FTBIN. 
The linear ranking of this pattern is shown in (11), with |LLLH| as its input. (11b) and (11c) 
have identical violation marks, hence the chance for each of them to be selected as optimal is 
nearly fifty-fifty. When (11c) is randomly chosen, the accuracy rate decreases because the OF 
of (11c) does not match the real data.  

 

 (11) PNF(F’)/IF↑: antepenultimate- and pre-antepenultimate-mora accentuation 

|LLLH| 
(/are’rugiː/ ‘allergy’) 
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a. /L(L’L)H/ *!      *   * *   ** 
☞  b. /(L)(L’L)H/    *  *  *  * * * * * 
☞	c. /(LL)(L’)H/           * *  * 

 

The remaining eight learners belong to PSLUMP, whose ranking values of several 
constraints fall sharply. Accuracy rates of this pattern vary greatly, with a minimum of 50%. 
The ranking dynamics of one representative learner are shown in Figure 3, where the slump 
of FTBIN, PARSE-σ, RIGHTMOST and WDACC can be clearly observed. Due to the lowest rank 
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of WDACC, words consisting of three or more moras will be output without an accent in this 
ranking, which cannot reflect the accented part in the real data correctly.    

 
6.2 GLA/RIP 

Most of the GLA/RIP learners have the reversed partial ranking MORFT ≫ NONFIN(L) 
and INITFT, NONFIN(FT’) ≫ FTBIN (PMF/NF(F’)/IF↑). This pattern also gives |LLLH| two optimal 
candidates, and wrongly outputs |H#L| (/kyuː’#yo/ ‘salary’) and |LL#L| (/ko’ku#chi/ 
‘notification’) as /(H)#(L)/ and /(LL)#(L)/ without an accent. The ranking dynamics of this 
pattern are shown in Figure 4, where a fluctuating rise of WDACC and RIGHTMOST can be 
observed, with the ε decrement set to 0 (the result is the same as the ε decrement set to 0.1). 

 

7. Reexamination of RIP 
The convergence failure of EDCD/RIP and GLA/RIP learners can be partly attributable to 

the parsing algorithm. This section introduces Jarosz (2013), which gave a detailed re-
examination of RIP and proposed two alternatives, Resampling Robust Interpretive Parsing 
(RRIP) and Expected Interpretive Parsing (EIP). 
 
7.1 RRIP 

In order to highlight the problem of RIP, the algorithm of RIP reformulated by Jarosz 
(2013) is shown in (12), which does not affect the behavior of the original parsing algorithm. 
 

 (12) Reformulated RIP for GLA (Jarosz 2013) 
1. Initialize Stochastic Grammar: G0  
2. Iterate over d in D: 
      a. Sample G′ ~ Gi 
     b. Input = uf(d) 
     c. Output = OptimizeG′(Input) 
     d. If overt(Output) ≠ d: 
          i. Parse = RIPG′(d) 
         ii. Gi+1 = Update(Gi, Parse, Output) 

 

 Jarosz stated that “[F]rom the reformulation it is clear that parsing is only relevant in case 
the selected grammar G′ generates an error…What is odd about this use of interpretive 
parsing in the stochastic setting, then, is that the learner nonetheless uses the known-to-be-
incorrect G′ for interpretive parsing.” In order to solve this problem, Jarosz added a simple 
modification to RIP, as shown in (13), with step 1 to 2c identical to those in (12). The 
difference between RRIP and RIP is that if G′ generates an error, the learner simply 

Figure 3 EDCD/RIP, PSLUMP Figure 4 GLA/RIP, PMF/NF(F’)/IF↑ (ε decrement = 0) 

― 37 ―



 
 

resamples another grammar G″ and uses it for interpretive parsing. This helps the learner 
reference its stochastic grammatical knowledge, the advantage of which is confirmed using 
simulations in Section 8.1. 

 

(13) RRIP for GLA (Jarosz 2013) 
… 
2d. If overt(Output) ≠ d: 
       i. Sample G″ ~ Gi 
      ii. Parse = RIPG″(d) 
     iii. Gi+1 = Update(Gi, Parse, Output) 

 

7.2 EIP 
The second problem pointed out by Jarosz (2013), the parsing-production mismatch, is 
exemplified in (14). Given the assumed ranking values, ALLFT-L ≫ ALLFT-R ≫ TROCHAIC 
≫ IAMBIC and ALLFT-R ≫ ALLFT-L ≫ TROCHAIC ≫ IAMBIC will be generated stochastically 
with equal probability, resulting in (14a) and (14c) being output as optimal nearly 50% of the 
time. TROCHAIC ≫ IAMBIC is fully activated to disfavor (14b) and (14d).  
 

 (14) The parsing-production mismatch (Jarosz 2013) 

|LLL| ALLFT-L 
300 

ALLFT-R 
300 

TROCHAIC 
200 

IAMBIC 
100 

a. /(L’L)L/  *  * 
b. /(LL’)L/  * *  
c. /L(L’L)/ *   * 
d. /L(LL’)/ *  *  

  

 However, if the learner hears [LL’L] and has to parse it with its current grammar, then 
candidates for RIP are restricted to (14b) and (14c) whose OF is identical to the real datum. 
This time, which candidate will be selected as the optimal SF depends in whole on the 
relative rank of ALLFT-R and ALLFT-L, leaving TROCHAIC and IAMBIC inactivated. In 
Jarosz’s words, “[A]ccording to the learner’s current grammar, /(LL’)L/ is the only possible 
parse of [LL’L], but RIP fails to reflect this categorical restriction imposed by the grammar.” 

In order to solve this problem, Jarosz proposed EIP, as shown in (15). With step 1 to 2c 
unchanged, when an error is detected, EIP repeatedly resamples new grammars from the 
current one until the OF of the output matches the real datum d.  
 

 (15) EIP for GLA (Jarosz 2013) 
… 
2d. If overt(Output) ≠ d: 
      i. Parse ~ P(parse | Gi, d) 
     ii. Gi+1 = Update(Gi, Parse, Output) 

 

8. Simulations: parsing with RRIP and EIP 
Based on Jarosz’s proposition, this section conducts simulations using the novel parsing 

strategies RRIP and EIP. Because these algorithms require stochastic knowledge, the learning 
algorithm here is restricted to GLA. Training data and other parameter settings are the same 
as in Section 6. Basic statistics of the accuracy rate are given in (16), which includes the 
above-mentioned results of GLA/RIP for comparison. 
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(16) Descriptive statistics of GLA/RIP, GLA/RRIP and GLA/EIP 
Algorithm N Mean SD Median Min Max 
GLA/RIP 20 0.92 0.01 0.92 0.92 0.94 
GLA/RRIP 20 0.94 0.02 0.94 0.94 1 
GLA/EIP 20 1 0 1 1 1 

  

 A statistical difference is found between these three algorithms (Kruskal-Wallis H test, H 
= 48.627, p < .001), and the result for Bonferroni-corrected pairwise comparisons is 
significant (Mann-Whitney U test, p < .001 for all three pairs). 
 
8.1 GLA/RRIP 

Three patterns are observed in GLA/RRIP learners. Two learners belong to PLA, 
converging to the target grammar successfully. The second pattern (PMF/NF(F’)↑; 17 learners) 
has the reversed partial ranking MORFT ≫ NONFIN(L) and NONFIN(FT’) ≫ FTBIN, which 
wrongly parses |H#L| and |LL#L| into /(H)#(L)/ and /(LL)#(L)/ with WDACC and RIGHTMOST  
fluctuating relentlessly as presented in Figure 4. The last learner has the third pattern PFB↑ 
where FTBIN outranks NONFIN(σ), NOLAPSE and MT, parsing |LH| (/ri’bon/ ‘ribbon’) and 
|HLH| (/rande’buː/ ‘rendezvous’) into /(LH)/ and /(H’L)H/ with a trimoraic foot.  

To summarize, although two learners fortunately acquired the target grammar relying on 
their random resampling strategy, the fact 
that 90% of the learners failed to reach the 
goal still calls the validity of RRIP into 
question. 

 
8.2 GLA/EIP 

As shown in (16), all GLA/EIP 
learners successfully converged with their 
outputs all matching the real data in the 
OF level. Twelve learners are classified 
into PLA, and the remaining eight learners 
belong to the pattern PNF(F’)↑ with 
NONFIN(FT’) outranking FTBIN. The 
ranking dynamics of PNF(F’)↑ are shown in 
Figure 5, with the ε decrement set to 0. The only difference between PNF(F’)↑ and PLA is the 
output of |LL| (/me’mo/ ‘note’). In PLA, |LL| is parsed into /(L’L)/ with a bimoraic foot 
structure due to the effect of FTBIN, while in PNF(F’)↑ /(L’)L/ is output as optimal, leaving the 
word-final mora unparsed to avoid violating NONFIN(FT’), as shown in (17). However, 
because these two outputs have the same OF [L’L], learners of these two patterns can 
communicate without any hindrance. Hence the result of PNF(F’)↑ is also counted as converged. 
Moreover, the final value of NONFIN(FT’) and FTBIN in PNF(F’)↑ are almost identical, so it is 
highly probable for  PNF(F’)↑ to shift to PLA as learning proceeds. 
 

 (17) PNF(F’)↑: monomoraic-foot /(L’)L/ as optimal 

|LL| 
(/me’mo/ ‘note’) 
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☞	a. /(L’)L/       *   *    * 
b. /(L’L)/    *  *  *!  *   *  

 

Figure 5 GLA/EIP, PNF(F’) ↑ (ε decrement = 0) 
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9. Conclusions 
This study carried out several computational simulations to examine the learnability of 

dominant accentual patterns of Sino-Japanese words and loanwords. With a full structural 
description incorporated in the input level of perception, both EDCD and GLA learners 
converged efficiently. However, under more realistic conditions, the ambiguity of hidden 
structures cannot be effectively tackled by RIP. RRIP and EIP proposed by Jarosz (2013) 
were introduced to overcome the problem of RIP. Finally, GLA/EIP learners all successfully 
converged, showing that EIP can take full advantage of probabilistic information even in the 
face of an intricate target grammar. Future work will mainly cover the examination of 
different parameter settings and update rules, and the simultaneous learning-parsing 
algorithm for both the lexicon and the grammar. 

 
Notes 
* This paper is a revised version of a presentation at the Phonology Spring Meeting 2017, Keio University, on 23 
June 2017. I really appreciate the participants who gave feedback to me, as well as two anonymous reviewers 
who commented on this paper. 
1 Definitions of constraints used in this paper are given below. LEXFT and NONFIN(L) were introduced in Li 
(2017), while other constraints were defined or referenced in Ito and Mester (2016). 
LEXFT: Every lexeme minimally projects its own foot; MORFT: Every lexical morpheme minimally projects its 
own foot; MT: Feet are (H), (LL), and (L); NONFIN(σ): Word-final syllables are not footheads; NONFIN(L): 
Word-final light syllables are not footheads; NOLAPSE: Syllables are maximally parsed into feet; MINWDACC: 
A minimal prosodic word contains a prominence peak; RIGHTMOST: Violated by any foot following the head 
foot within the prosodic word; WSP: Heavy syllables are footheads; FTBIN: Feet are minimally binary at some 
level of analysis (mora, syllable); IINTFT: A prosodic word begins with a foot; NONFIN(FT’): Violated by any 
head foot that is final in its PrWd; WDACC: A prosodic word contains a prominence peak; PARSE-σ: All 
syllables are parsed into feet. 
2 Tesar and Smolensky (2000) prepared 124 target grammars for their EDCD/RIP simulation, and only 75 of 
them were learned successfully (convergence rate = 60%). Using the same data set as Tesar and Smolensky 
(2000), Boersma (2003) reported that GLA/RIP converged on 70% of the target grammars. 
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